Sanchi oil tanker disaster: how spills and accidents can make ships safer


Sanchi oil tanker disaster: how spills and accidents can make ships safer

File 20180129 100905 ov53d7.jpg?ixlib=rb 1.1
The Sanchi disaster.

Jin Wang, Liverpool John Moores University

The Sanchi tanker was carrying 136,000 tonnes of oil from Iran to South Korea when it collided with the Hong Kong-flagged cargo ship CF Crystal, 160 nautical miles off the coast of Shanghai, China. The collision on January 6, 2018 caused a serious fire, and the oil tanker eventually sank eight days later. All 30 Iranian and two Bangladeshi seafarers died in the accident. The other vessel, CF Crystal was damaged at a comparatively minor scale and all of its 21 Chinese crew were rescued.

Although this was the most significant oil tanker accident since the Prestige tanker spilled 77,000 tonnes of heavy oil into the Atlantic off the coast of Spain in November 2002, its environmental impact was, at least, less severe than other similarly large disasters. Its cargo was light crude oil and most of it entered the atmosphere following the fire so it had less impact on the ocean. The accident also happened in the open sea, far from places where people live so the impact on human activity is likely to be minimal.

But every time a disaster like this happens, it forces shipping companies and governments to look again at how tankers are designed and operated. For example, the loss of the Amoco Cadiz in 1978 led to the requirement for there to be two or more identical power units operating the rudder for tankers of 10,000 gross register tonnage and above. So the Sanchi accident will likely have an impact on future ships.

Once the causes leading to the accident are clearly identified, it will then be possible to work out where risks can be reduced and how this could be fed back into the design of new tankers and improve how ships run. The most important improvements are likely to be those that target the weakest link in the operation: the fallible human crew.

The sinking of the Amoco Cadiz changed shipbuilding forever.

Other previous oil spills have had more of an effect on the physical design of ships and the technology they use. For example, the Prestige tanker disaster shocked the public and focused attention on tanker safety. As a result, the EU banned single hull tankers carrying heavy oil from entering its ports, bringing it in line with US restrictions introduced after the 1989 Exxon Valdez disaster. It is less likely for double hulled and double bottomed ships to have oil spills because the inner hull and bottom provide an extra layer of protection for leakage.

Yet while ship design may be improved through the introduction of risk-mitigating measures, around 80% of maritime accidents are actually caused (directly or indirectly) by human error. For example, the motor tanker Sea Empress, which grounded off the coast of Wales in 1996, released 2,500 tonnes of crude oil, with a further 69,000 tonne lost during salvage. The main cause was an error by the pilot, who failed to take appropriate and effective action to keep the vessel in the deepest part of the channel because they had insufficient training and experience of large tankers. The impact was that pilots subsequently had to be appropriately trained using simulators.

Human error

Given that the Sanchi collided with another ship, it’s highly likely human error played a similar role in this accident. Human error can be reduced through more resilient design with greater redundancy so that if one system stops working, another takes over. Traditionally this has meant things like using two engines instead of one. But new technology such as intelligent sensors can also make a difference by automatically detecting when problems occur, such as faults in a hull structure. Similarly, introducing more safety warning devices and improving crew training, supervision and communication could help prevent human errors and catch them earlier when they do occur.

The other technology that could reduce human error is automation. All ship operations including navigation, propulsion and things like loading and unloading can be automated – although eliminating human crew altogether would introduce other safety issues by making the ship entirely dependent on software. Much of the technology to make this possible already exists or is under development.

The ConversationBut in the near future, it is unlikely for many shipping companies will introduce such automation. Unmanned ships aren’t yet allowed to operate in international waters and there are many other obstacles yet to be overcome relating to things like insurance and regulations. The other issue is that the marine industry always tries to minimise possible costs, and so often accepts a certain amount of risk if it is cheaper to do so. Unless shipping companies have evidence automation will reduce their costs, they are unlikely to change their operational culture in a short period of time.

Jin Wang, Professor of Marine Technology, Liverpool John Moores University

This article was originally published on The Conversation. Read the original article.

Leave a Reply

SSCP   CAS-002   9L0-066   350-050   642-999   220-801   74-678   642-732   400-051   ICGB   c2010-652   70-413   101-400   220-902   350-080   210-260   70-246   1Z0-144   3002   AWS-SYSOPS   70-347   PEGACPBA71V1   220-901   70-534   LX0-104   070-461   HP0-S42   1Z0-061   000-105   70-486   70-177   N10-006   500-260   640-692   70-980   CISM   VCP550   70-532   200-101   000-080   PR000041   2V0-621   70-411   352-001   70-480   70-461   ICBB   000-089   70-410   350-029   1Z0-060   2V0-620   210-065   70-463   70-483   CRISC   MB6-703   1z0-808   220-802   ITILFND   1Z0-804   LX0-103   MB2-704   210-060   101   200-310   640-911   200-120   EX300   300-209   1Z0-803   350-001   400-201   9L0-012   70-488   JN0-102   640-916   70-270   100-101   MB5-705   JK0-022   350-060   300-320   1z0-434   350-018   400-101   350-030   000-106   ADM-201   300-135   300-208   EX200   PMP   NSE4   1Z0-051   c2010-657   C_TFIN52_66   300-115   70-417   9A0-385   70-243   300-075   70-487   NS0-157   MB2-707   70-533   CAP   OG0-093   M70-101   300-070   102-400   JN0-360   SY0-401   000-017   300-206   CCA-500   70-412   2V0-621D   70-178   810-403   70-462   OG0-091   1V0-601   200-355   000-104   700-501   70-346   CISSP   300-101   1Y0-201   200-125  , 200-125  , 100-105  , 100-105  , CISM   NS0-157   350-018  , NS0-157   ICBB  , N10-006 test  , 350-050   70-534   70-178   220-802   102-400   000-106   70-411  , 400-101   100-101  , NS0-157   1Z0-803   200-125  , 210-060   400-201   350-050   C_TFIN52_66  , JN0-102  , 200-355   JN0-360   70-411   350-018  , 70-412   350-030   640-916   000-105   100-105  , 70-270  , 70-462   300-070  , 300-070   642-999   101-400   PR000041   200-101  , 350-030   300-070  , 70-270  , 400-051   200-120   70-178   9L0-012   70-487   LX0-103   100-105  ,